A personal history of railway operations research

March 9, 2012

Dr. Rob M.P. Goverde
Department of Transport & Planning
r.m.p.goverde@tudelft.nl
Outline

A personal history of railway operations research

- Event data mining
 - Past
 - Present
- Timetable stability
 - Past
 - Present
- Future
 - Closed-loop traffic management
Introduction

Train delays

- Initial delay
 - Late start or entry

- Primary delay
 - Disturbance

- Secondary delay
 - Path conflict

> Supplement

> Buffer time
Event data mining – Past

TNV-logfiles (1997)

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00:00</td>
<td>TNV_DLM VTNR</td>
<td>103: Elementmelding aangaande DT$815BT toestand: BZ_ONBEZET.</td>
</tr>
<tr>
<td>08:00:01</td>
<td>TNV_DLM VTNR</td>
<td>104: Elementmelding aangaande DT$840AT toestand: BZ_BEZET.</td>
</tr>
<tr>
<td>08:01:01</td>
<td>TNV_DLM VTNR</td>
<td>103: Elementmelding aangaande DT$822T toestand: BZ_ONBEZET.</td>
</tr>
<tr>
<td>08:02:02</td>
<td>TNV_DLM VTNR</td>
<td>150: de_akt DT$AAL88X0212 0 0323</td>
</tr>
<tr>
<td>08:03:03</td>
<td>TNV_DLM VTNR</td>
<td>103: Elementmelding aangaande DT$85BT toestand: BZ_BEZET.</td>
</tr>
<tr>
<td>08:04:04</td>
<td>TNV_DLM VEXT$1</td>
<td>103: Elementmelding aangaande DT$840AT toestand: BZ_BEZET.</td>
</tr>
<tr>
<td>08:05:05</td>
<td>TNV_DLM VTNR</td>
<td>103: Elementmelding aangaande DT$840AT toestand: BZ_ONBEZET.</td>
</tr>
<tr>
<td>08:06:06</td>
<td>TNV_DLM VTNR</td>
<td>103: Elementmelding aangaande DT$840AT toestand: BZ_BEZET.</td>
</tr>
<tr>
<td>08:07:07</td>
<td>TNV_DLM VTNR</td>
<td>103: Elementmelding aangaande DT$840AT toestand: BZ_BEZET.</td>
</tr>
<tr>
<td>08:08:08</td>
<td>TNV_DLM VEXT$VKL10</td>
<td>103: Elementmelding aangaande DT$840AT toestand: BZ_BEZET.</td>
</tr>
<tr>
<td>08:09:09</td>
<td>TNV_DLM VTNR</td>
<td>103: Elementmelding aangaande DT$840AT toestand: BZ_BEZET.</td>
</tr>
<tr>
<td>08:10:10</td>
<td>TNV_DLM VTNR</td>
<td>103: Elementmelding aangaande DT$840AT toestand: BZ_BEZET.</td>
</tr>
</tbody>
</table>
Event data mining – Past

TNV-Prepare (1999)

<table>
<thead>
<tr>
<th>Date</th>
<th>Train Nr</th>
<th>Drg</th>
<th>Drg</th>
<th>904/8045</th>
<th>71T</th>
<th>71T</th>
<th>78</th>
<th>78</th>
<th>A28CT</th>
<th>A28CT</th>
<th>A28BT []</th>
<th>A28BT</th>
<th>A28AT</th>
<th>A28AT</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-9-9</td>
<td>2527</td>
<td>08</td>
<td>08</td>
<td>08:56:00</td>
<td>08:56:00</td>
<td>08:56:00</td>
<td>08:56:00</td>
<td>08:56:00</td>
<td>08:56:00</td>
<td>08:56:00</td>
<td>08:56:00</td>
<td>08:56:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mini-Symposium on Railway Operations Research
Event data mining – Past

Accuracy of online and registered arrival delays

Arrival IC2500 in Breda

Aantal treinen

-3 -2 -1 0 1 2 3 4 5

Aankomst volgens sectiebezetting - aankomst volgens NVGB (min)
Event data mining – Present

Train path realizations (TNV/TROTS)
Intermezzo – Blocking times

- Blocking time
- Block occupancy
- Sight and reaction time
- Approach time
- Running time
- Clearing time
- Release time
- Train length
- Conflicting predecessor
- Sight distance
- Distance
- Time
- Delay
Event data mining – Present

Occupation and blocking time realizations/conflicts

Scheduled stops

Blocking time

Track section occupancy (occupation and release time)
Timetable stability – Past

Timetable (time-distance diagram)
Timetable stability – Past

Events and precedence relations

Distance

Time
Timetable stability – Past

Events and precedence relations incl. min headway
Timetable stability – Past

Timed event graph = max-plus model

Arc weights are minimum process times

Event times are maximum of precedence relations and timetable
Timetable stability – Past

Delay propagation of 10 min delay IC2200 Dt-Rtd

Period
- 4
Timetable stability – Past

Critical circuits: minimum cycle time of timetable

- Minimum cycle time = maximum cycle mean (of critical circuit)

\[\lambda = \max_C \frac{\text{Total minimum process time on cycle } C}{\text{Scheduled periods on cycle } C} \]

- Example 2007 timetable DONS data \(\lambda = 60:23 > 60 \), so unstable
- Realization data median \(\lambda = 59:26 \), 10th pct \(\lambda = 56:59 \) (5% slack)
Timetable stability – Present

Switching max-plus model
Timetable stability – Present

Switching max-plus model

Characteristics
- Change of event orders,
- Cancelled connections,
- Varying arc weights

Usage
- More flexibility,
- Apply control decisions

<table>
<thead>
<tr>
<th>Time</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Timetable stability – Present

Stochastic max-plus model
Timetable stability – Present

Stochastic max-plus model

Characteristics
Stochastic arc weights, Stochastic event times

Analysis
Delay propagation, Expected cycle time, Stationary delays
Future – Closed-loop traffic control

Predictive max-plus model from event data

- Passenger information
- Traffic control
- Actual timetable and route setting
- Railway operations
- Train descriptor
- Event time predictions
- Predictive traffic model
- Historical traffic database

Traditional feedback

Intelligent feedback
Future – Closed-loop traffic control

Conflict detection and resolution

Customer satisfaction

Model-predictive optimization

Delay prediction

Conflict detection

Real-time decision support

Communication actual timetable

Reordering, retiming, rerouting, Speed advise

IM, TOCs

Timetable, crews, rolling stock

IM, TOCs, Drivers

Customers

Train positions, resources

Railway operations

Model-predictive optimization

Train positions, resources

Real-time decision support

Communication actual timetable

IM, TOCs

Timetable, crews, rolling stock

IM, TOCs, Drivers

Customers

Train positions, resources

Railway operations

Model-predictive optimization

Train positions, resources

Real-time decision support

Communication actual timetable

IM, TOCs

Timetable, crews, rolling stock

IM, TOCs, Drivers

Customers

Train positions, resources

Railway operations

Model-predictive optimization

Train positions, resources

Real-time decision support

Communication actual timetable

IM, TOCs

Timetable, crews, rolling stock

IM, TOCs, Drivers

Customers

Train positions, resources

Railway operations
Conclusions

Key principles

• Planning
 - Aim at (real-time) conflict-free train paths
 - Use blocking times with precision in seconds
 - Conflict detection and feasibility proof
 - (Stochastic) stability analysis of integrated network timetables

• Support tools for efficient railway traffic management
 - Use live data streams as much as possible
 - Provide effective monitoring information on past and current situation
 - Support decision-making with intelligent model calculations
 - Conflict detection, delay prediction, train path feasibility
 - Dynamic railway traffic management
 - Automate routine tasks
 - Route setting from time-distance diagram
 - Communicate actual timetable to all parties involved